Journal of Organometallic Chemistry, 132 (1977) 37–43 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DIE KRISTALLSTRUKTUREN VON TETRAMETHYLARSONIUM-DICHLORODIMETHYLGALLAT $[(CH_3)_4As]^* [(CH_3)_2GaCl_2]^-$ UND TETRAMETHYLARSONIUM-TRICHLOROMONOMETHYLGALLAT $[(CH_3)_4As]^* [CH_3GaCl_3]^-$

H.D. HAUSEN *, H.J. GUDER und W. SCHWARZ

Institut für Anorganische Chemie der Universität Stuttgart Pfaffenwaldring 55, 7000 Stuttgart 80 (B.R.D.)

(Eingegangen den 25. October 1976)

Summary

Tetramethylarsonium dichlorodimethylgallate $[(CH_3)_4As]^+$ $[(CH_3)_2GaCl_2]^$ crystallizes in the monoclinic space group $P2_1/c$. The unit cell with lattice constants a = 7.511, b = 11.734, c = 14.908 Å and $\beta = 99.75^{\circ}$ includes four formula units. The mean values of the bond lengths are: As-C 1.923, Ga-Cl 2.277 and Ga-C 1.980 Å.

Tetramethylarsonium trichloromonomethylgallate $[(CH_3)_4As]^+$ $[CH_3GaCl_3]^$ also crystallizes in the monoclinic space group Pc with two formula units in the cell. The lattice constants are a = 7.104, b = 6.640, c = 13.385 Å and $\beta = 93.82^{\circ}$. Mean bond lengths: As-C 1.941, Ga-Cl 2.223 and Ga-C 1.934 Å.

In both compounds both As and Ga are tetrahedrally surrounded; the anionic tetrahedra are markedly distorted.

Zusammenfassung

Tetramethylarsonium-dichlorodimethylgallat $[(CH_3)_4As]^+$ $[(CH_3)_2GaCl_2]^$ kristallisiert in der monoklinen Raumgruppe $P2_1/c$. Die Elementarzelle mit den Gitterkonstanten a = 7.511, b = 11.734, c = 14.908 Å und $\beta = 99.75^\circ$ enthält vier Formeleinheiten. Die mittleren Bindungslängen sind: As-C 1.923, Ga-Cl 2.277 und Ga-C 1.980 Å.

Tetramethylarsonium-trichloromonomethylgallat $[(CH_3)_4As]^+[[CH_3GaCl_3]^$ kristallisiert ebenfalls monoklin in der Raumgruppe *Pc* mit zwei Formeleinheiten in der Zelle. Die Gitterkonstanten sind: *a* = 7.104, *b* = 6.640, *c* = 13.385 Å und β = 93.82°. Mittlere Bindungslängen: As—C 1.941, Ga—Cl 2.223 und Ga—C 1.934 Å.

In beiden Verbindungen ist sowohl As als auch Ga tetraedrisch umgeben; die anionischen Tetraeder sind deutlich verzerrt.

Einleitung

In jüngster Zeit haben wir über ionische Verbindungen mit vierfach koordiniertem Indium der allgemeinen Zusammensetzung $[(CH_3)_4M]^+[(CH_3)_nInX_{4-n}]^-$ (mit M = As, Sb und X = Cl, Br) berichtet [1,2].

Durch Alkylierung partiell methylierter Chloride des fünfwertigen Arsens oder Antimons mit Methylgalliumdichlorid, Dimethylgalliumchlorid bzw. Trimethylgallium lassen sich die homologen Galliumverbindungen darstellen [3] (Gl. 1-4).

 $\begin{array}{ll} \operatorname{Me_{3}AsCl_{2}}+\operatorname{MeGaCl_{2}}\rightarrow\operatorname{Me_{4}As^{*}}\operatorname{GaCl_{4}^{-}} & (1) \\ \operatorname{Me_{3}AsCl_{2}}+\operatorname{Me_{2}GaCl}\rightarrow\operatorname{Me_{4}As^{*}}\operatorname{MeGaCl_{3}^{-}} & (2) \\ \operatorname{Me_{3}AsCl_{2}}+\operatorname{Me_{3}Ga}\rightarrow\operatorname{Me_{4}As^{*}}\operatorname{Me_{2}GaCl_{2}^{-}} & (3) \\ \operatorname{Me_{4}AsCl}+\operatorname{Me_{3}Ga}\rightarrow\operatorname{Me_{4}As^{*}}\operatorname{Me_{3}GaCl^{-}} & (4) \end{array}$

Schwingungsspektroskopische Untersuchungen (IR und RE) [3] zeigen, dass, wie bei den Indiumverbindungen, isolierte kationische und anionische Tetraeder vorliegen; im anionischen Tetraeder $[(CH_3)_n GaCl_{n-4}]^-$ ist mit steigendem *n* eine Zunahme sowohl der Ga—Cl-, als auch der Ga—C-Bindung zu erwarten. Die Aufklärung der Kristallstrukturen von Tetramethylarsonium-dichlorodimethylgallat und -trichloromonomethylgallat (im weiteren als I und II benannt) erschien uns als Bereicherung der Kenntnisse über die Strukturchemie und die Bindungsverhältnisse in Organogalliumverbindungen, zumal bisher nur wenig Strukturen einfacher Organogalliumverbindungen beschrieben sind.

Strukturanalyse

Während die systematischen Auslösungen bei I (h0l: l = 2n + 1; 0k0: k = 2n + 1) eindeutig die Raumgruppe $P2_1/c$ (= C_{2h}^5) bestimmen, muss bei II (h0l: l = 2n + 1) zwischen der azentrischen Raumgruppe Pc (= C_s^2) und der zentrosymmetrischen P2/c (= C_{2h}^4) [4] unterschieden werden. Die *E*-Wert Statistik sprach für die azentrische Raumgruppe Pc; II kristallisiert isotyp mit der analogen Indiumverbindung [1].

Die Struktur der Verbindung I (Kristalldaten s. Tab. 1) konnte über direkte Methoden mit dem Programm PHASE [5] gelöst werden. Es wurden die Vorzeichen von 171 *E*-Werten bis E > 1.2 bestimmt. Eine damit berechnete erste Fourier-Synthese (*E*-Map) ergab gut ausgeprägte Maxima für As und Ga sowie die beiden Cl-Atome. Anschliessenden Differenz-Fourier-Synthesen konnten sukzessive die Ortsparameter der Kohlenstoffatome entnommen werden.

Die Verfeinerung nach der Methode der kleinsten Fehlerquadrate führte mit isotropen Temperaturfaktoren zu einem *R*-Wert von 0.096, mit anisotropen zu einem solchen von 0.065 (jeweils volle Matrix; $R = \Sigma(||F_0| - |F_c||)/\Sigma|F_0|$).

Eine erste Strukturfaktorenrechnung der Verbindung II (Kristalldaten s. Tab. 1) bei welcher Ga und As die Positionen der entsprechenden Zentralatome der isotypen Indiumverbindung zugeordnet wurden, ergab einen *R*-Wert von 0.294. Einer Fourier-Synthese unter Berücksichtigung der durch die Ga- und As-Lagen bestimmten Phasen, konnten die Ortsparameter der Chloratome entnommen wer-

(Fortsetzung s.S. 41)

TABELLE 1

KRISTALLDATEN

Formel:	[(CH ₃) ₄ As] [(CH ₃) ₂ GaCl ₂]	[(CH ₃) ₄ As] [CH ₃ GaCl ₃]
Formelgewicht:	305.8	326.2
Elementarzelle:	monoklin	monoklin
a	7.511(2) Å	7.104(2) A
ь	11.734(3) Á	6.640(2) Å
c	14.908(4) Å	13.385(4) Å
ß	99.75(3)°	93.82(4) [°]
Volumen:	1294.9(6) Å ³	630.0(3) Å ³
Dichte (exp.):	$\rho = 1.53 \mathrm{g cm^{-3}}$	$\rho = 1.77 \text{ g cm}^{-3}$
Dichte (röntg.):	$\rho = 1.568(1) \text{ g cm}^{-3}$	$\rho = 1.719(1) \text{ g cm}^{-3}$
Absorptionskoeffizient		
für Mo-Ka	52.7 cm^{-1}	56.3 cm ⁻¹
Raumgruppe:	P21/c	Pc
Zahl der Formeleinheiten	-	
in der Elementarzelle:	<i>Z</i> = 4	<i>Z</i> = 2

TABELLE 2

ORTSPARAMETER VON [(CH₃)₄As][(CH₃)₂GaCl₂] (IN KLAMMERN DIE STANDARDAB-WEICHUNGEN (σ) BEZOGEN AUF DIE LETZTEN DEZIMALEN)

Atom	x/a	y/b	<i>z/c</i>	
As	0.3758(1)	0.0937(1)	0.8006(1)	
C(21)	0.3895(18)	0.2572(9)	0.7925(9)	
C(22)	0.2054(15)	0.0515(11)	0.8783(8)	
C(23)	0.6127(14)	0.0380(10)	0.8507(7)	
C(24)	0.2979(15)	0.0298(10)	0.6826(7)	
Ga	0.8051(2)	0.1844(1)	0.5836(1)	
CI(1)	0.5252(4)	0.2630(3)	0.5470(2)	
Cl(2)	0.8795(4)	0.2459(3)	0.7300(2)	
C(11)	0.9644(16)	0.2674(11)	0.5123(9)	
C(12)	0.7752(16)	0.0173(10)	0.5862(8)	

TABELLE 3

.

ORTSPARAMETER VON [(CH_3)₄As] [CH_3 GaCl₃] (IN KLAMMERN DIE STANDARDAB-WEICHUNGEN (σ) BEZOGEN AUF DIE LETZTEN DEZIMALEN).

Atom	x/a	y/b	z/c	
As	0.4432(3)	0.4388(3)	0.0472(1)	-
C(21)	0.6395(45)	0.5798(41)	-0.0317(27)	
C(22)	0.4330(32)	0.5575(32)	0.1779(15)	
C(23)	0.5060(31)	0.1579(29)	0.0599(17)	
C(24)	0.2084(29)	0.4569(32)	-0.0265(17)	
Ga	0.0025(0)	0.0527(3)	0.2500(0)	
CI(1)	0.2966(7)	0.0510(8)	0.3155(4)	
Cl(2)	0.0221(9)	0.0636(9)	0.0952(4)	
Cl(3)	0.0693(8)	0.3769(8)	0.2253(5)	
C(1)	-0.1750(24)	0.0903(33)	0.3274(15)	

TABELLE 4

THERMISCHE PARAMETER VON [(CH₃)₄As][(CH₃)₂GaCl₂]

Von dem Parameter U des isotropen Temperaturfaktors $\exp(-8\pi^2 U \sin^2\theta/\lambda^2)$ sowie von dem Parametern U_{ij} des anisotropen Temperaturfaktors $\exp(-2\pi^2(U_{11}h^2a^{+2} + U_{22}k^{2b^{+2}} + U_{33}l^2c^{+2} 2U_{12}hka^{+}b^{+} + 2U_{13}hla^{+}c^{+} + 2U_{23}klb^{+}c^{+})$ sind die 10⁴-fachen Werte angegeben

Atom	U	<i>U</i> 11	U ₂₂	U33	U ₁₂	U ₁₃	U23
As	524(6)	582(8)	519(7)	516(7)	1(5)	163(5)	13(5)
C(21)	863(52)	1108(104)	443(64)	955(94)	85(65)	90(79)	46(62)
C(22)	745(46)	749(80)	986(92)	687(77)	12(70)	466(62)	112(67)
C(23)	681(42)	514(67)	978(89)	659(72)	202(62)	138(54)	112(62)
C(24)	700(43)	873(84)	958(90)	424(6)	38(69)	170(56)	-153(59)
Ga	560(6)	564(8)	636(9)	531(8)	40(6)	178(6)	60(6)
CI(1)	757(12)	580(18)	963(23)	776(20)	95(16)	124(15)	153(17)
C1(2)	781(13)	867(23)	986(24)	536(17)	13(18)	64(15)	-17(15)
C(11)	872(52)	713(87)	998(95)	1012(99)	58(72)	392(72)	263(78)
C(12)	789(48)	844(86)	651(78)	956(94)	-59(63)	296(71)	17(64)

TABELLE 5

THERMISCHE PARAMETER VON [(CH₃)₄As][(CH₃GaCl₃]

Von dein Parameter U des isotropen Temperaturfaktors $\exp(-8\pi^2 U \sin^2\theta / \lambda^2)$ sowie von den Parametern U_{ij} des anisotropen Temperaturfaktors $\exp(-2\pi^2 (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)$ sind die 10⁴-fachen Werte angegeben.

Atom	U	<i>U</i> ₁₁	U ₂₂	<i>U</i> 33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
As	471(8)	392(93)	526(12)	548(11)	27(11)	32(7)	-30(13)
C(21)	954(147)	1056(231)	840(185)	1556(271)	-310(186)	229(190)	191(195)
C(22)	751(124)	694(128)	818(155)	545(120)	16(114)	158(89)	-133(104
C(23)	531(97)	901(167)	416(111)	719(127)	229(102)	-61(120)	-7(97)
C(24)	708(95)	424(99)	782(131)	712(122)	-39(96)	25(84)	-32(105)
Ga	437(8)	328(9)	520(13)	537(11)	49(11)	39(8)	-31(13)
Cl(1)	566(18)	328(20)	859(34)	633(26)	71(23)	-41(18)	22(27)
Cl(2)	698(25)	680(30)	860(39)	520(26)	150(29)	11(20)	-128(28)
CI(3)	742(27)	550(27)	513(28)	1177(49)	114(23)	57(28)	1(28)
C(1)	464(68)	253(79)	764(141)	614(111)	8(85)	195(71)	126(111)

TABELLE 6

BINDUNGSABSTÄNDE (Å) UND -WINKEL (°) IN [(CH₃)₄As][(CH₃)₂GaCl₂] (in Klammern die Standardabweichungen bezogen auf die letzten Dezimalen)

GCl(1)	2.276(4)	Cl(1)-Ga-Cl(2)	99.7(1)	
Ga-Cl(2)	2.277(4)	Cl(1)-Ga-C(11)	106.8(4)	
Ga-C(11)	1.985(13)	Cl(1)-Ga-C(12)	107.7(4)	
Ga-C(12)	1.975(13)	Cl(2)-Ga-C(11)	106.6(4)	
		Cl(2)—Ga—C(12)	107.8(4)	
		C(11)-Ga-C(12)	125.3(6)	
As-C(21)	1.926(14)	C(21)—As—C(22)	109.9(6)	
As-C(22)	1.931(13)	C(21)—As—C(23)	107.9(5)	
As-C(23)	1.924(13)	C(21)—AsC(24)	110.1(5)	
As-C(24)	1.911(13)	C(22)-As-C(23)	110.1(5)	
		C(22)-As-C(24)	108.7(5)	
		C(23)-As-C(24)	110.1(5)	

Fig. 1. Anordnung der Tetraeder in der Elementarzelle von [(CH₃)₄As] [(CH₃)₂GaCl₂].

den. Differenz-Fourier-Synthesen lieferten schliesslich die Kohlenstofflagen. Bei der Verfeinerung konvergierte der *R*-Wert für isotrope Temperaturfaktoren bei 0.098, für anisotrope bei 0.058 (jeweils volle Matrix; $R = \Sigma(||F_0| - |F_c||/\Sigma|F_0|)$).

Die Wasserstoffatome blieben bei beiden Strukturen unberücksichtigt. Auf eine Korrektur des Absorptionsfehlers wurde verzichtet. Die Atomformfaktoren wurden nach Cromer und Mann [6] parametrisiert.

In den Tabellen 2–5 sind die Ergebnisse der Stukturbestimmung aufgeführt. Zur Veranschaulichung dienen die Fig. 1 und 2.

In den Tabellen 6 und 7 sind die Bindungslängen und -winkel aufgeführt.

TABELLE 7

BINDUNGSABSTÄNDE (Å) UND -WINKEL (°) IN	[(CH ₃) ₄ As] [CH ₃ GaCl ₃]	(in Klammern die Standard-
abweichungen bezogen auf die letzten Dezimalen)		

GaCl(1)	2.211(3)	Cl(1)GaCl(2)	104.6(2)	
Ga-C1(2)	2.224(3)	Cl(1)-Ga-Cl(3)	105.3(2)	
Ge-Cl(3)	2,232(3)	Cl(1)GaC(1)	114.7(6)	
GaC(1)	1.934(8)	Cl(2)-Ga-Cl(3)	103.0(2)	
		Cl(2)-Ga-C(1)	114.4(6)	
		Cl(3)-Ga-C(1)	113.7(6)	
As-C(21)	2.033(36)	C(21)-As-C(22)	110.6(11)	
AsC(22)	1.924(29)	C(21)-As-C(23)	109.3(11)	
As-C(23)	1.923(27)	C(21)-As-C(24)	108.3(12)	
As-C(24)	1.884(29)	C(22)-As-C(23)	109.8(9)	
		C(22)AsC(24)	111.3(10)	
		C(23)-As-C(24)	107.5(9)	

Fig. 1. Anordnung der Tetraeder in der Elementarzelle von [(CH₃)₄As] [(CH₃)₂GaCl₂].

den. Differenz-Fourier-Synthesen lieferten schliesslich die Kohlenstofflagen. Bei der Verfeinerung konvergierte der *R*-Wert für isotrope Temperaturfaktoren bei 0.098, für anisotrope bei 0.058 (jeweils volle Matrix; $R = \Sigma(||F_0| - |F_c||/\Sigma|F_0|)$).

Die Wasserstoffatome blieben bei beiden Strukturen unberücksichtigt. Auf eine Korrektur des Absorptionsfehlers wurde verzichtet. Die Atomformfaktoren wurden nach Cromer und Mann [6] parametrisiert.

In den Tabellen 2-5 sind die Ergebnisse der Stukturbestimmung aufgeführt. Zur Veranschaulichung dienen die Fig. 1 und 2.

In den Tabellen 6 und 7 sind die Bindungslängen und -winkel aufgeführt.

TABELLE 7

BINDUNGSABSTÄNDE (Å) UND -WINKEL (°) IN [(CH₃)₄As] [CH₃GaCl₃] (in Klammern die Standardabweichungen bezogen auf die letzten Dezimalen)

Ga-Cl(1)	2.211(3)	Cl(1)GaCl(2)	104.6(2)	
Ga-Cl(2)	2.224(3)	Cl(1)-Ga-Cl(3)	105.3(2)	
Ga-Cl(3)	2.232(3)	Cl(1)GaC(1)	114.7(6)	
Ga-C(1)	1.934(8)	Cl(2)GaCl(3)	103.0(2)	
		Cl(2)GaC(1)	114.4(6)	
		Cl(3)-Ga-C(1)	113.7(6)	
As-C(21)	2.033(36)	C(21)-As-C(22)	110.6(11)	
As-C(22)	1.924(29)	C(21)-As-C(23)	109.3(11)	
As-C(23)	1.923(27)	C(21)-As-C(24)	108.3(12)	
As-C(24)	1.884(29)	C(22)-As-C(23)	109.8(9)	
		C(22)—As—C(24)	111.3(10)	
		C(23)-As-C(24)	107.5(9)	

Experimentelles

Die Verbindungen I und II wurden nach dem oben beschriebenen Verfahren (Gl. 2 und 3) dargestellt. Zur Röntgenstrukturanalyse geeignete Einkristalle wurden aus einer bei Raumtemperatur gesättigten Lösung in sorgfältig getrocknetem Methylenchlorid durch langsames Abkühlen auf 5°C erhalten. Wegen ihrer Empfindlichkeit mussten die Kristalle unter absolutem Nujol ausgesucht und für die weiteren Untersuchungen in Glaskapillaren eingeschmolzen werden.

Vorläufige Gitterkonstanten wurden aus Schwenk-, Buerger-Präzessions- und Weissenberg-Aufnahmen erhalten; die endgültigen Werte wurden durch Verfeinerung an einem Vierkreisdiffraktometer bestimmt. Die Intensitätsmessungen erfolgten an einem automatischen Vierkreisdiffraktometer CAD-4 der Firma Nonius mit Mo- K_{α} -Strahlung bei Raumtemperatur. Bei I wurden insgesamp 1557 unabhängige Reflexe vermessen, von welchen 212 zu Null bestimmt wurden $(2\theta_{\text{Max}} = 44^{\circ})$. Die Struktur II wurde aus 1229 unabhängigen Reflexen, davon hatten 187 eine Intensität von Null, ermittelt $(2\theta_{\text{Max}} = 52^{\circ})$. Die Berechnung der beobachteten Strukturfaktoren erfolgte mit einem der κ -Geometrie des Diffraktometers angepassten Programm [12]. All nachfolgenden Rechnungen wurden mit dem Programmsystem "X-Ray 72" [5] auf der Rechenanlage CDC 6600 der Universität Stuttgart durchgeführt.

Dank

Der Deutschen Forschungsgemeinschaft danken wir für die Bereitstellung von Sachmitteln; Prof. Strähle, Universität Tübingen, sei für die Ermöglichung der Messungen gedankt.

Literatur

- 1 H.J. Guder, W. Schwarz, J. Weidlein, H.J. Widler und H.D. Hausen, Z. Naturforsch. 31 (1976) 1185.
- 2 W. Schwarz, H.J. Guder, R. Prewo und H.D. Hausen, Z. Naturforsch., 31 (1976) 1427.
- 3 J. Weidlein und H.J. Widler, Z. Anorg. Allg. Chem. im Druck.
- 4 International Tables for X-Ray Crystallography, Kynoch-Press, Birmingham, England, 1952.
- 5 G.M. Stewart, G.J. Kruger, H.L. Ammon, C. Dickinson und S.R. Hall, X-Ray System of Crystallgraphic Programs, University of Maryland, 1972.
- 6 D. Cromer und G. Mann, Acta Crystallogr. A24 (1968) 321.
- 7 L. Pauling, "The Nature of Chemical Bond", Cornell University Press, Ithaca, N.Y., 1948.
- 8 R. Restivo und Gus J. Palenik, J.Chem. Soc. Chem. Commun., (1969) 867.
- 9 R. Restivo und Gus J. Palenik, J. Chem. Soc. Dalton, (1972) 341 (s. dort weitere Literatur).
- 10 H.D. Hausen, K. Mertz und J. Weidlein, J. Organometal. Chem., 67 (1974) 7.
- 11 H.D. Hausen, H.J. Guder und W. Schwarz, (in Vorbereitung).
- 12 "CADLP", Programm zur Auswertung und LP-Korrektur von Daten aus dem Nonius-Diffraktometer CAD-4 Ulrich Müller, Fachbereich Chemie, Universität Marburg, 1971 (unveröffentlicht).